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Medical Genetics and Human Genetics, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and

Humboldt-Universität zu Berlin, Berlin 13353, Germany, 3FG Development and Disease, Max-Planck-Institut für Molekulare Genetik,

Berlin 14195, Germany, 4Department of Internal Medicine—Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of
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Abstract

Motivation: While the identification of small variants in panel sequencing data can be considered a solved problem,
the identification of larger, multi-exon copy number variants (CNVs) still poses a considerable challenge. Thus, CNV
calling has not been established in all laboratories performing panel sequencing. At the same time, such laboratories
have accumulated large datasets and thus have the need to identify CNVs on their data to close the diagnostic gap.

Results: In this article, we present our method clearCNV that addresses this need in two ways. First, it helps labora-
tories to properly assign datasets to enrichment kits. Based on homogeneous subsets of data, clearCNV identifies
CNVs affecting the targeted regions. Using real-world datasets and validation, we show that our method is highly
competitive with previous methods and preferable in terms of specificity.

Availability and implementation: The software is available for free under a permissible license at https://github.com/
bihealth/clear-cnv.

Contact: manuel.holtgrewe@bih-charite.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Hybrid capture methods (Ng et al., 2009) allow for targeted
sequencing ranging from whole-exome sequencing to panel
sequencing of few known disease genes. They have thus made
high-throughput sequencing affordable for clinical applications by
strongly reducing the required sequencing data. From the perspec-
tive of bioinformatics, there are few differences in analyzing small
panels, whole-exome or whole-genome sequencing (WES/WGS)
data for single-nucleotide variants (SNVs) and small insertions
and deletions.

However, the detection (commonly also referred to as calling) of
copy number variants (CNVs) is considerably harder because of struc-
tured but very inhomogeneous variances in depth of coverage that are
typical for hybrid capture methods. Reasons for such variance include
GC content of the targeted regions, biochemical properties of the used
enrichment kits and batch effects in producing the enrichment
reagents (Benjamini and Speed, 2012; Daniel et al., 2011).

Nevertheless, CNVs are of large interest as they account for 4.5–
12% of genome variation in humans (Collins et al., 2020; Sudmant
et al., 2015) and are implied in many diseases (Conrad et al., 2010;
Nowakowska, 2017; Zhang et al., 2009). CNVs are a subclass of
structural variants; the latter is commonly defined as variation with
a size of larger than 50 bp. The size of CNVs can range from the
lower limit to the loss or amplification of whole-chromosome arms
or chromosomes.

From the authors’ experience, CNV calling for panel sequencing
data has not been systematically established in many laboratories
performing targeted panel sequencing yet despite the wide use of
panel sequencing. While many centers are now introducing WES
or even WGS into standard care, they have considerable numbers of
panel sequencing data already available (Marshall et al., 2020).
Obviously, being able to reanalyze this data for CNVs is highly de-
sirable to solve more cases without additional sequencing.

Various tools for the CNV analysis of panel sequencing have re-
cently been published in the literature including CoNVaDING
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(Johansson et al., 2016) and AtlasCNV (Chiang et al., 2019).
Further, tools for the analysis of exome data have been enabled for
the analysis of panel data, including panelcn.MOPS (Povysil et al.,
2017) or ExomeDepth (Plagnol et al., 2012). Some methods have
been developed and evaluated solely for a single panel such as
AtlasCNV while others can be used more widely such as
panelcn.MOPS or ExomeDepth. Approaches to combine CNV call-
ing tools to achieve the highest possible accuracy can differ in their
results by a lot given different datasets (Moreno-Cabrera et al.,
2020; Sadedin et al., 2018).

However, centers wishing to analyze their panel data in hind-
sight often also face unexpected challenges. From the experience of
the authors, these also include missing, incomplete or incorrect
documentation of which gene panel or gene panel version was used
for a particular sample.

In this article, we present our software package clearCNV that
(i) contains a program that helps users to properly assign panel se-
quence data to the used panel and to separate sequencing batches,
(ii) provides a novel method that allows to analyze their data for
copy number variations and (iii) provides an easy-to-use visualiza-
tion of the coverage data and the called CNVs.

2 Materials and methods

2.1 CNV calling algorithm
The first part of our method is the implementation of a novel algo-
rithm for the identification of CNVs from targeted sequencing data.
Some steps are built on the ideas of already existing algorithms. The
steps of the algorithm are described below and illustrated in
Figure 1.

1. Target file creation. Overlapping and nearby targets are
merged to avoid ambiguities further downstream.

2. Fragment counting. We count the number of fragments (reads
or read pairs) per target. Fragments overlapping with multiple
targets are assigned to the one closest to the center. The results
are tabulated in a matrix x with entries Xði; jÞ in row i and col-
umn j; that is the number of fragments of sample j on target i.
Samples with a median fragment count smaller than 5 are
excluded to avoid downstream problems.

3. Data normalization. The matrix is first normalized per sample
(per column) by dividing each column’s values by the col-
umn’s median X0 i; jð Þ :¼ Xði; jÞ=medianðX0ði; �ÞÞ and then per
target (per row) X00ði; jÞ :¼ X0ði; jÞ=medianðX0ð�; jÞÞ, where ‘�’
indicates all elements in that dimension.

4. Match scores are a distance metric to identify samples with
similar coverage patterns (similarly used in the context of
CNV calling by Johansson et al., 2016). A match score m of
two samples (vectors) s and k is defined as the mean difference
of two vectors. clearCNV additionally removes the k greatest
differences before computing the mean:
ms;k :¼ meanðquantile1�k abs s� kð Þð ÞÞ, where k (default is
0.02) is a user-adjustable factor that attributes for expected
uneven variance. Such a variance includes signals for CNVs as
well as forms of noise. The final visualizations (Fig. 2) help to
adjust this factor.

5. Sample group. Each sample S gets assigned a set of back-
ground samples. Any sample x in each sample group satisfies
that its match score mx;S is below the median match score of
all match scores of all samples multiplied by a user-specifiable
constant h (default 2):
m x; Sð Þ � median m �; �ð Þð Þ � h. This way each sample gets
assigned an individually sized sample group. We determined
the default value for h empirically by inspecting histograms of
all match scores. No CNV calls are generated on a sample
that has a sample group size below a user-specifiable thresh-
old c (default 20); however, it may appear in another sample’s
sample group. h and c were determined by choosing a relative
optimum between the number of samples and the variance in
a sample group. In CNV calling, a subset of fragment counts
normalized per sample is chosen according to the selected
sample group of sample S. Let this table be X0S.

6. Data normalization II and III. X0S is normalized per target to
get X00S and the vector X00Sð�; SÞ in X00S containing all values of S
is extracted.
X00S without S ðX00S S) is again normalized per target to remove
any effect of S on the sample group’s statistics which yields
X000S . The 10% columns of X000S with greatest variance are then
dropped from X000S to further reduce variance.

Fig. 1. CNV calling algorithm. This figure illustrates the steps described in the main text. In step 3, green indicates a sample that is normalized in that step. In steps 5 and 6, or-

ange indicates the sample group background and blue the CNV calling sample. In steps 6 and 7, green indicates the calculated (and scaled) z-score (A color version of this figure

appears in the online version of this article.)
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7. Scaled z-scores. z-scores are calculated for sample S, which is
found in X00S on each row i: zðiÞ :¼ X00Sði; SÞ=rðiÞ, where r is the
vector of per row standard deviations of X000S . The resulting
z-scores are then scaled to reduce the effects of noise in CNV
calling: z0ðiÞ :¼ zðiÞ2�a, where z(i) is the z-score of target i of
sample S. The value a is the user-provided factor which is
0.65 by default. We determined the default for a in compari-
son with plotted heatmaps and checked where most CNV
calls aligned with our judgment. The resulting vector of z0 is
saved in a matrix Z which contains all scaled z-scores of all
samples.

8. r-scores approximate a copy number of a target in a sample. r-
scores are created in the previous step on the vector X00Sð�; SÞ.
Ideally, a r-score of 1.0 indicates a wild type, while 0.5 indi-
cates a heterozygous deletion, 1.5 indicates a heterozygous du-
plication, 2.0 indicates a homozygous duplication and so on.
These values are saved to a matrix R for each target and sam-
ple. This matrix holds all r-scores at the end.

9. CNV calling. Two types of CNVs are called: (a) multi-exon
CNVs and (b) single-exon CNVs.

(a) At first, the Viterbi algorithm is used on a Gaussian Hidden
Markov Model (HMM). The means of the three states (dele-
tion, wild type and duplication) are semi-automatically
adjusted. For deletion, the mean is calculated as mdel ¼ �3 r,
for wild type it is mwt ¼ m and for duplication it is
mdup ¼ 4 r, with r the st.dev. and m the median of all scaled
z-scores. The Viterbi algorithm is then run on the z-scores in
Z. The covariances are set to 1.0. The transition probability
matrix is created from the user-adjustable transition prob-
ability s (default s¼0.001):

1� ð2sÞ s s
s 1� ð2sÞ s
s s 1� ð2sÞ

0
@

1
A:

The resulting hidden states of each sample are saved in a ma-
trix H that holds all hidden states of all targets and all sam-
ples. For each sample S, a consecutive interval T of targets is
aggregated to a single CNV if the average ratio score r ¼
meanðRðT; SÞÞ satisfies r < l (default is 0.75) or r > x (de-
fault is 1.35) and all hidden states of H(T, S) are the same
and not the wild type. m and x were chosen under the

assumption that they separate the ratio scores well. The score
function c of a CNV is the absolute value of the mean of
scaled z-scores of all contributing targets c(T, S) ¼
mean(abs(Z(T, S))).

(b) To call single-exon CNVs, two thresholds are applied to Z. A
single target t of sample S is called a deletion if Zðt; SÞ <
�3:5 and R t; Sð Þ < 0:75 or a duplication if Zðt; SÞ > 4:5 and
Rðt; SÞ > 1:35 and only if it is not contained in an already
called multi-exon CNV by the HMM-guided method. All de-
fault values for parameters were determined by empirical
methods, including comparisons with data visualizations.

10. Output. The CNV calls are saved in a tabular file containing
the gene names, aberration, size, score and sample score.
Furthermore, the scaled z-scores matrix Z and the ratio-
scores matrix R and a list of samples that failed to have a suf-
ficient sample group size are written to output files.

2.2 Result visualization
The second part of our method is a web browser-based visualization
for the relative copy numbers per target and per sample represented
by the ratio scores, as well as the scaled z-scores. This allows the
user to visually screen the results of their experiments as well as the
results of the CNV calling algorithm.

Scaled z-scores and ratio-scores are both visualized in responsive
heatmaps. Each heatmap additionally shows a track of mappability,
target size and GC content at each target. These are calculated from
the target file, the reference and a uniqueness-of-reference file. The
scaled z-scores are clipped to the interval [�6, 6]. The ratio scores
are clipped to the interval [0, 2]. An example of such a heat map is
shown in Figure 2.

2.3 Sample to panel re-assignment
The third part of our method supports users in the assignment of
aligned sequencing results in BAM format to panel target informa-
tion in Browser Extensible Format (BED) files. This is important for
retrospective analyses in the presence of artifacts such as sample
swaps or erroneous documentation of the used sequencing kit. A
BED file is a text file containing genomic regions, for example,
exons. The following steps are illustrated in Figure 3. The projection
by PCA and t-distributed stochastic neighbor embedding (TSNE), as
well as the clustering can be interactively worked with in a plotly
Dash app (https://plotly.com/dash/).

When applied with clearCNV, batch separation (see Section 2.4)
should be done before the CNV calling step.

1. BED file merging. The panel re-assignment algorithm starts with

merging all input target files to one union of target files. This is

necessary to make the given samples comparable.

2. Fragment counting is done the exact same way as in the CNV

calling algorithm. An entry in the resulting matrix is addressed

as Xði; jÞ for the ith row (target) and jth column (sample).

3. Binary matrix. We are interested only whether a target is cov-

ered and not in the depth of coverage. Since we expect off-target

effects in the enrichment, we call a target covered only if the per

target fragment counts divided by target size is above 1/50. In

the case of reads of 100 bp size, this, for example, would corres-

pond to a read depth coverage of 2. The final matrix X is binary

(1 ¼ covered, 0 ¼ uncovered).

4. PCA and transformation. A principal component analysis (PCA)

transformation is applied to X with d dimensions (default is 20,

adjustable by the user) yielding X0. The default of d is chosen

according to the order of magnitude of the number of targets per

panel.

5. TSNE. A TSNE projects X0 to a latent space (here with two com-

ponents) which allows fast and simple clustering on the resulting

matrix X00. The random process within the TSNE makes it

Fig. 2. Example heatmap of r-scores. This is a small example of a heatmap showing

the ratio scores of each target (row) for each sample (column). A darker spot indi-

cates a lower r-sore and vice versa. Aligned to the targets are three tracks: 1.

Mappability, GC-content and log bp, which is the log transformed size of a target in

bp. Each of these three tracks show a value of 0 if the colored curve is on the left

side. The Mappability and GC-content tracks have a value of 1 if the curve is on the

right side. Log bp can be any size if on the right side but it scales with the maximum

value in the track. Additionally, we marked several phenomena in the heatmap to il-

lustrate its potential. (a) A possible copy number gain, (b) a target with high vari-

ance (or copy number variability), (c) a low-quality sample with high variance and

(d) several samples that were too noisy and whose r-scores were set to 1.0 (imputed)
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necessary for the user to occasionally re-run the process to arrive

at a desired projection and clustering result.

6. Clustering. An agglomerative clustering on X00 finds the clusters.

7. Cluster assignment. The resulting clustering is mapped to the

provided target files. A majority vote is used to assign each clus-

ter to a target file. This implies the constraint that each cluster

must have a majority of correctly assigned samples to a target

file.

8. Output. At this point, the datasets are untangled and new lists of

bam-files are written to the according output files.

2.4 Batch separation
We observed separable subsets in the data, which were not

explained by erroneous sample-panel assignments. We suspect that
limited numbers of well plate units may have introduced such batch
effects. We suspected even more possible reasons such as the design

of custom enrichment kits or flow cell biases.
Batch separation is done for each cluster with its previously

assigned panel resulting from the sample re-assignment. The batch-
separation algorithm is like the sample re-assignment algorithm.

Again, the interactive parts are implemented in a plotly Dash app.

1. Fragment counts sub-setting. The matrix containing the frag-

ment counts per target is subset to the samples found in the given

cluster. The targets are subset from the union BED-file to contain

only targets that are present in the assigned panel. Differently to

the panel re-assignment procedure, the resulting matrix is not

reduced to a binary matrix but holds the per sample and per tar-

get normalized fragment counts.

2. PCA and transformation. Analog to panel re-assignment step 4.

3. TSNE. Analog to panel re-assignment step 5.

4. Clustering. The interactive interface lets the user control the

number of batches on each set of samples for each panel.

5. Output. A list of alignment file paths (BAM format) per identi-

fied batch is written to an output file for each found cluster. This

file can be used in the CNV calling step.

2.5 Evaluation
To evaluate the performance of our algorithm, we compared it with
existing approaches to call CNVs on targeted sequencing data. The
tool selection was limited to those having a scientific publication

and being freely available for research applications. We chose
ExomeDepth (Plagnol et al., 2012), CoNVaDING (Johansson et al.,
2016) and panelcn.MOPS (Povysil et al., 2017) to evaluate com-
paratively with clearCNV. We chose not to use the recent tool
Atlas-CNV by Chiang et al. (2019) in the evaluation because it was

designed to find single exon CNVs in the eMERGESeq panel, which
we did not use (an earlier evaluation showed no competitive results

on our dataset, data not shown). A brief overview of the tools’ fea-
tures can be found in Supplementary Section S8.

We wrote CNV calls and internal or explicit scorings of
clearCNV, CoNVaDING, ExomeDepth and panelcn.MOPS, each to
a uniformly formatted file for a comparative evaluation.

We attempted to evaluate all four tools on simulated targeted
sequencing data. The data were simulated with CapSim (Cao,

2018). A detailed analysis of the generated simulated data showed
that important properties and biases that we observe in real-world
data are not captured appropriately in the simulation, in particular

missing correlation between adjacent exons. Nevertheless, simulated
data allow to evaluate tool performance with a known ground

truth.
The results on the simulated data can be summarized as follows.

clearCNV is competitive with the other tools on simulated data and
showed the highest positive predicted value (PPV) at the cost of
some sensitivity. ExomeDepth shows good performance overall,

CoNVaDING and panelcn.MPOS showed a very high false positive
rate for certain samples (we were unable to determine the root cause

for this).

Fig. 3. Sample to panel re-assignment and batch separation. The steps are numbered according to the main text’s steps. (A) The sample re-assignment and (B) the batch separ-

ation. X; X0 and X00 illustrate matrices, where ‘�’ means any numerical entry. Colors blue and orange indicate different clusters (or with yellow different batches). Frames over-

laying a matrix indicate the vector that is subject to an operation (A color version of this figure appears in the online version of this article.)
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All details regarding the simulation, analysis and performance
results can be found in Supplementary Sections S6 and S7.

To compare the results of the CNV calling of each tool on real-
world data, we used two different approaches. First, we compared
the scores given to each single target in each sample for each tool.
We did this before we chose a subset of CNV calls to be validated
via quantitative PCR (qPCR). The details can be found in
Supplementary Section S2 of the supplement. Second, we compared
the scores of the aggregated called CNVs after we had the qPCR
results. We ranked the called CNVs for each tool to achieve compar-
ability. The ranking is described in detail in Section 3. Finally, we
visualized these rankings for each tool’s results, which can be seen in
Section 3 and in Figure 5.

Regarding the results, two different parameters were scored.
First, each tool scores single targets for each sample. These are the
target scores. Second, CNV calls are scored and the target scores are
the underlying scores. They are aggregated in some way, for ex-
ample, by taking the mean of the consecutive targets that form the
called CNV. These are the CNV scores.

Each tool has a different scoring metric per target and only
ExomeDepth and clearCNV aggregate called CNVs. In the case of
CoNVaDING, we chose to score the targets according to the median
‘AUTO_ZSCORE’ scores which are found in the matching *.total-
list files. panelcn.MOPS does also not provide aggregated CNV calls
and no target scores. After very helpful correspondence with the
authors, we followed their advice to calculate scores per target and
used the RC ratio (RC.norm/medRC.norm) to score single targets
per sample. To aggregate called CNVs, we merged consecutive tar-
gets if they were called the same copy number unequal two.
clearCNV generates both the target scores and the CNV scores.

We performed our evaluation on seven custom panels manufac-
tured by Agilent from different genetic rare disease fields. Data were
generated in a diagnostic setting and all patients gave informed con-
sent for further research. Four panels have about six thousand tar-
gets, the others have about one or two thousand. In total, we had
data from 1407 different individual samples. More detailed infor-
mation about the data can be found in Supplementary Section S1,
Supplementary Table S1 and Supplementary Figure S1.

3 Results

3.1 Sample to panel re-assignment and batch

separation
In total, 38 out of 1407 total samples were re-assigned to different
panels or panel versions, for which the documentation was not com-
plete anymore. Sixteen samples had a fragment-per-target count so
low that they were excluded from any further processing by
clearCNV. A detailed log of the sample re-assignment and batch sep-
aration process can be found in Supplementary Section S3.

3.2 CNV calls
The Venn diagram in Figure 4A shows all called CNVs on all data-
sets by CoNVaDING, ExomeDepth, panelcn.MOPS and clearCNV.
As it can be seen, the results show a great discordance in terms of
called CNVs. To select a feasible number of variants for validation
by qPCR, we limited the results to those CNVs called by three tools
or more. We finally had to exclude samples for which no DNA for
validation was available. This resulted in a set of 88 CNV calls to be
validated. We could confirm 35 CNV calls, of which 15 were dupli-
cations and 20 were deletions. One deletion could be confirmed by
inspecting the corresponding WGS track in IGV highlighting
extended fragment spans (see Section 2 and Supplementary Fig. S2).
The other 34 CNVs were confirmed via qPCR, following the proto-
col detailed in Ott et al. (2010). An overview of total, validated, and
confirmed CNV calls for each tool is found in Table 1.

Even after several adjustments of the DNA melting temperatures,
we were not able to identify the true copy number via qPCR of 9 out
of the 88 CNV calls. We treated ambiguous results as unconfirmed
calls (same as wild type). We analyzed mappability and GC content
of the CNV calls and our whole data. We found that for about 15%

of the targets (data points), a too high GC content rendered qPCR
validation infeasible. The details can be found in Supplementary
Section S4.

Figure 4B shows a Venn diagram of the 35 confirmed CNVs.
The subsets overlapping only two or one tools are left blank, as
these CNV calls were excluded from validation. Eleven CNV calls
were made by all four tools and were successfully validated. Three
CNV calls that were confirmed by qPCR were not called by
clearCNV. CoNVaDING missed 18, panelcn.MOPS missed 2 and
ExomeDepth missed 1. As can be seen in Figure 4A, the overall

Fig. 5. CNV calling score ranks versus cumulated number of confirmed CNVs. All

CNV calls are ranked for each tool and separately for deletions (A) and duplications

(B). Each tool’s results with standard parameters are represented by a solid line

Fig. 4. Venn diagrams of called and confirmed CNVs. (A) All CNV calls on all avail-

able data. CNVs selected for validation are marked in bold letters. (B) Only the con-

firmed (by qPCR) CNVs. Unlabeled subsets have a cardinality of zero
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number of CNV calls varies greatly between the tools. Besides the
total number of true positives, one must consider the rank of the
true within the false positives within each tool.

Figure 5 shows receiver/operator characteristics-like plots for
each tool. Each tool attaches scores to its resulting CNV calls. These
scores can be understood as a transformed approximation of confi-
dence. Ranking these scores (sort, then enumerate) allows to com-
pare each tool’s results directly. The horizontal axis shows the
(log10-scaled) rank of the curve and the vertical axis shows the cu-
mulative number of positively validated CNVs. The curve ends for
each tool where the lowest ranking CNV call was confirmed.

It can be seen that ExomeDepth and clearCNV both created
some true positive CNV calls among the highest ranks. Also, this ap-
proximation of specificity shows a difference in calling either dele-
tions or duplications on our dataset. ExomeDepth starts similarly
specifically as clearCNV. The curve flattens and reaches into the
1000th rank to find all 20 deletions. The CNV calls by
CoNVaDING and panelcn.MOPS start with lower ranks and end
with very low ranks. But in the case of duplications, CoNVaDING’s
results show even a slightly higher specificity than ExomeDepth’s.
Overall, clearCNV misses three CNV calls but shows superior speci-
ficity when compared with other tools. A detailed analysis of the
three missed CNVs can be found in Supplementary Section S5. All
results can be downloaded from the Supplementary Repository
(https://github.com/bihealth/clear-cnv-supplementary).

4 Discussion

clearCNV showed competitive sensitivity and excellent specificity
on different real-world datasets, which were partially very heteroge-
neous in the underlying batches and unknown variances (more
details in Supplementary Section S3). High specificity is important
in clinical applications as it reduces the number of false positives
and effort for validation.

Differences in specificity of the different tools can be attributed
to different design decisions by their authors. panelcn.MOPS was
not designed to operate at a high specificity, which is an intentional
choice by the authors who worked with very high-quality data (see
discussion on GitHub: https://github.com/bioinf-jku/panelcn.mops/
issues/19). CoNVaDING and ExomeDepth were designed to handle
noise and more difficult data, but both rely on the user to discard
low-quality samples or to isolate reference samples which have low
noise to be used as models to fit their models on.

clearCNV works without such preparatory steps by clustering
the data beforehand and then filtering out low-quality samples.
clearCNV also allows the user to visualize the results of the cluster-
ing and filtering steps to validate the parameter choices and allows
to adjust parameters for fine-tuning when necessary.

Adding preprocessing steps, such as clustering, and batch separ-
ation allowed clearCNV to compensate for greater structural diffi-
culties observable in the data. Other tools take similar but not as
far-reaching approaches by finding subsets of samples that form a
common statistical background for any single sample. clearCNV
does that in addition to the two previous steps of panel-re-
assignment and batch separation, which are also embedded in a
user-friendly interactive Dash interface.
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Table 1. CNV calls by all tools

Tool Total CNV calls Validated calls Confirmed calls

clearCNV 233 73 32

CoNVaDING 3711 46 17

ExomeDepth 4669 84 34

panelcn.MOPS 40 081 82 33

Notes: This table shows the total number of CNV calls made by each tool

and the according number of validated and confirmed CNV calls. The subsets

can be inspected in Figure 4.
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